Thursday 22 March 2012

Grillage Analysis:Wheel Load Transfer to Nearest Joints

Grillage Analysis
      Wheel Load Transfer to nearest joints.

First Step
Cutting section along e-f

Re x l1 = P x b
Re = P x b/l1

Similarly;      
Rf = P x a/l1

Second Step
Considering beam 1-4


R1 = Re x d/l2
Thus:
R1 = P x b x d/ (l1 x l2) = (b x d/l1 x l2) x P

Similarly:
R4 = Re x c/l2
R4 = P x b x c/ (l1 x l2) = (b x c/l1 x l2) x P
 

Considering beam 2-3




R2 = Rf x d / l2
R2 = P x a x d / (l1 x l2) = (a x d /l1 x l2) x P

Also:
R3 = Rf x c / l2
R3 = P x a x c / (l1 x l2) = (a x c / l1 x l2) x p




R x l1 x l2 = P x b x d
R1 = (b x d / l1 x l2) x P


                                       Similar argument can be applied to the other nodes.





Wednesday 21 March 2012

Vortex Induced Vibration-Oil Platform Riser (English Units)


CROSS FLOW VORTEX INDUCED VIBRATION ANALYSIS 
Global Variables - Input 
Prepared by: Checked by:
Pipe Outside Diameter, Do =   18in
Pipe Wall Thickness,t =   0.562in
Concrete weight coating thickness, tc =  1.5in
Young Modulus -Steel, E =   2.90E+07psi
Sea current velocity for a 100 yr Return period storm, U = 3ft/s
Specified minimum yield strength of pipe, Sy =  52000psi
Strouhal number, St =    0.219 
Kinematic viscosity of sea water at 70oC, vk  0.0000113ft2/s
End fixity constant, C =(kπ)/2   2.55 
Added mass coefficient, Cm   1 
Concrete weight coating density, ρoc =  140lbs/ft3
Density of Steel, ρos =    490lbs/ft3
Density of Seawater, ρow =   64lbs/ft3
Logarithm Decrement, δ   0.05 
        
        
ψT =Normal Safety Class coefficient  2 
ψD =Period transformation Factor  1 
ψR =Natural frequency Reduction Factor 1 
ψU =Extreme Current Variability factor  1 
 
  
Pipe Inside Diameter, Di = Do - 2t   16.876in
Total pipe outside diameter with concrete coating, Dtot = Do+2tc21in
Moment of inertia of cross section, I  1171.637829in4
Damping ratio, ζ = δ2/(δ2+4π2)   0.007956464 
Weight of displaced water, ww =(π/4)*Dtot2ow 153.958lbs/ft
Weight of contents, wocn =(π/4)*Di2ocn  99.4266266lbs/ft
Dry weight of pipe with concrete coating, ws    
 =(π/4)*((Do2-Di2)*ρos +(Dtot2-Do2))*ρoc  194.1292651lbs/ft
Specific weight of pipe, (ρsw) = (ws/ww)   1.260923532 
Dynamic mass, wd =(ww + wocn + ws) / g   13.89794695slugs/ft
Stability Parameter, Ks =π2 ζ ((ρsw) -Cm)  0.020494895 
Free Span Reduced Velocity, VR,ONSET CROSS FLOW   
 =((π3)*((ρsw + Cm)/(1.5+St2+(ρs/ρw + Cm)-1.5Ks2)))^0.5     3.797567143 
Limiting criteria for the onset of Cross flow Vibration,   
fn ≥ (U/(VR,ONST*Dtot))*ΨTDRU  0.902833656Hz
Maximum Allowable Free Span length, L   ft
=(((C*((EI/M)^0.5)))/fn)^0.5)   107.8787189ft
        

CROSS FLOW VORTEX INDUCED VIBRATION ANALYSIS-Oil Platform Riser


CROSS FLOW VORTEX INDUCED VIBRATION ANALYSIS-Oil Platform Riser
Global Variables - Input
Pipe Outside Diameter, Do =457.2mm
Pipe Wall Thickness,t =14.2748mm
Concrete weight coating thickness, tc =38.1mm
Young Modulus -Steel, E =2.00E+02KN/mm2
Sea current velocity for a 100 yr Return period storm, U =0.9144m/s
Specified minimum yield strength of pipe, Sy = 52000psi
Strouhal number, St =0.219
Kinematic viscosity of sea water at 70oC, vk0.0000113ft2/s
End fixity constant, C =(kπ)/22.55
Added mass coefficient, Cm1
Concrete weight coating density, ρoc =140lbs/ft3
Density of Steel, ρos =490lbs/ft3
Density of Seawater, ρow =64lbs/ft3
Logarithm Decrement, δ0.05
ψT =Normal Safety Class coefficient2
ψD =Period transformation Factor1
ψR =Natural frequency Reduction Factor1
ψC =Extreme Current Variability factor1
Global Variables - Output
Pipe Inside Diameter, Di = Do - 2t428.6504in
Total pipe outside diameter with concrete coating, Dtot = Do+2tc533.4in
Moment of inertia of cross section, I487672484in4
Damping ratio, ζ = δ2/(δ2+4π2)0.007956464
Weight of displaced water, ww =(π/4)*Dtot2ow99327.54328lbs/ft
Weight of contents, wocn =(π/4)*Di2ocn64146.08242lbs/ft
Dry weight of pipe with concrete coating, ws
 =(π/4)*((Do2-Di2)*ρos +(Dtot2-Do2))*ρoc125244.4367lbs/ft
Specific weight of pipe, (ρsw) = (ws/ww) 1.260923532
Dynamic mass, wd =(ww + wocn + ws) / g 8966.399452slugs/ft
Stability Parameter, Ks =π2 ζ ((ρsw) -Cm)0.020494895
Free Span Reduced Velocity, VR,ONSET CROSS FLOW
 =((π3)*((ρsw + Cm)/(1.5+St2+(ρs/ρw + Cm)-1.5Ks2)))^0.53.797567143
Limiting criteria for the onset of Cross flow Vibration, 
fn ≥ (U/(VR,ONST*Dtot))*ΨTDRC0.010834004Hz
Maximum Allowable Free Span length, Lft
=(((C*((EI/M)^0.5)))/fn)^0.5)254.3431321ft