Input Data
#Node coordinates
Node=np.array([[0,0],[180,0],[180,240],[0,240]])
#Member connectivity
Conn=np.array([[0,2],[1,2],[3,2]])
#Boundary condition
BC=np.array([[0,1,1],[1,1,1],[3,1,1]])
#Joint loads
ELD=np.array([[2,50,-86.6]])
E=29000
A = 9
[[ 313.2 417.6 -313.2 -417.6]
[ 417.6 556.8 -417.6 -556.8]
[-313.2 -417.6 313.2 417.6]
[-417.6 -556.8 417.6 556.8]]
Stiffness Matrix for Member 1
[[ 0. 0. -0. -0. ]
[ 0. 1087.5 -0. -1087.5]
[ -0. -0. 0. 0. ]
[ -0. -1087.5 0. 1087.5]]
Stiffness Matrix for Member 2
[[ 1450. 0. -1450. -0.]
[ 0. 0. -0. -0.]
[-1450. -0. 1450. 0.]
[ -0. -0. 0. 0.]]
Stiffness Matrix for Member 3
[[ 313.2 417.6 0. 0. -313.2 -417.6 0. 0. ]
[ 417.6 556.8 0. 0. -417.6 -556.8 0. 0. ]
[ 0. 0. 0. 0. 0. 0. 0. 0. ]
[ 0. 0. 0. 1087.5 0. -1087.5 0. 0. ]
[ -313.2 -417.6 0. 0. 1763.2 417.6 -1450. 0. ]
[ -417.6 -556.8 0. -1087.5 417.6 1644.3 0. 0. ]
[ 0. 0. 0. 0. -1450. 0. 1450. 0. ]
[ 0. 0. 0. 0. 0. 0. 0. 0. ]]
Global Stiffness Matrix for the Structure
0 -21.657
1 -69.274
2 62.994
Computed forces for the Members
Node No X-react Y-react
======= ======= =======
Node No X-react Y-react
======= ======= =======
0 12.994 17.326
1 0.0 69.274
3 -62.994 0.0
Computed Reactions at the Nodes
Original and Deflected Truss Shape
No comments:
Post a Comment