Thursday, 18 September 2014

Structural Design of a Reinforced Concrete Balcony Slab to BS 8110


Design of Reinforced Concrete Balcony with Dwarf  Wall








Plan of Balcony Slab





Section through Balcony Slab

Moment and Shear
Slab Geometry
Span of slab = 1200 + (225/2)  = 1312.5 mm = 1.3125 m
Design width                            = 1000 mm = 1 m
Slab Details
Thickness of slab = 150 mm
Characteristic strength of concrete; fcu = 20 N/mm2
Characteristic strength of reinforcement; fy = 460 N/mm2
Material safety factor; γm = 1.05
Cover to bottom reinforcement; c = 20 mm
Cover to top reinforcement; c’ = 20 mm

Loading details
Slab loading
Dead load
Self weight of slab = 0.15 × 24                       = 3.6 kN/m2
Finishes @ 0.6 kN/m2 =                       = 0.6 kN/m2
Characteristic dead load; gk                  = 4.2 kN/m2
Dwarf wall loading
Wall is 150 mm hollow block wall (BS 648:1964, Schedule of weights of building materials)
Load per m run (Point load) = 1.52 × 1            = 1.52 kN/m
Characteristic dead load; gk                  = 1.52 kN/m
Imposed load     (Office general use = 2.5 kN/m2 ,BS 6399-1:1996, Table 1)
Characteristic imposed load; qk                        = 2.5 kN/m2
Design loading factors
Dead load factor; γG = 1.4
Imposed load factor; γQ = 1.6
Moment redistribution ratio; βb = 1.0
Design loads
Dead loads
Slab
Slab load     = 1.4 × 4.2× 1                   = 5.88 kN/m
Dwarf wall load  = 1.4 × 1.52              = 2.13 kN
Imposed loads
Slab
Slab load     = 1.6 × 2.5× 1                   = 4.00 kN/m
Moment and Shear
Service Moment
Mudl   = (0.5 × 4.2 × 1.31252) + (0.5 × 2.5 × 1.31252)  = 5.77kNm
Mpoint  = 1.52 × 1.3125                                                 = 2.00 kNm
Design Moment
Mudl   = (0.5 × 5.88 × 1.31252) + (0.5 × 4.00 × 1.31252)          = 8.51kNm
Mpoint  = 2.13 × 1.3125                                                 = 2.80 kNm
Design Shear force
V   = (5.88 × 1.3125) + (4.00 × 1.3125) + 2.13           = 15.10 kN
Slab Design (Per metre run of balcony)
Using 12 mm main bars and 10 mm distribution bars
Effective depth of reinforcement; d = 150 – 20 + (12/2)  =  124 mm
Support moment; m’ = 8.51 + 2.80 = 11.31 kNm/m
Design reinforcement
(3.4.4.4)
Lever arm; K’ = 0.402 × (βb – 0.4) – 0.18 × (βb – 0.4)2 = 0.176
K = m / (d2 × fcu) = 0.036778 < 0.176
Compression reinforcement is not required
(3.4.4.4)
z = min((0.5 + √(0.25 – (K / 0.9))), 0.95) × d = 117.8 mm
Area of reinforcement designed; Asreqd = m / (z × fy / γm) = 219.70 mm2/m
Minimum area of reinforcement required; Asmin = 0.0013 × h = 195 mm2/m
Area of reinforcement required; Asreq = max(Asreqd, Asmin) = 219.70 mm2/m
Provide 12 mm dia bars @ 200 mm centres
Area of main reinforcement provided; Asprov = 566 mm2/m
Provide 10 mm dia bars @ 200 mm centres
Area of distribution reinforcement provided; Asprov = 393 mm2/m
Shear Check
Maximum allowable shear stress; vmax = min(0.8 × √(fcu), 5) = 3.58 N/mm2
shear stress; v = V / (b × d) = 15.10 ×103 / (1000 × 124)  = 0.122 N/mm2
Shear capacity of Slab; vc = (min(fcu,40)/25)1/3×0.79×min(100×Asprov/(b×d),3)1/3×max(400/d,1)1/4/1.25
Shear capacity of Slab; vc = 0.756 N/mm2 > 0.122 N/mm2
Shear Capacity Okay
Check deflection
Basic span/d  ratio = 7
Kudl = 0.25
Kpoint  = 0.33
Adjusted basic ratio = Basic ratio× (Mudl + Mpoint × Kudl/ Kpoint)/( Mudl + Mpoint )
Adjusted basic ratio = 7× (5.77 + 2.00 × 0.25/ 0.33)/( 5.77 + 2.00 )  =  6.56
Design service stress; fs = 2 × fy × Asreq / (3 × Asprov × βb) = 119.04 N/mm2
Modification factor; k1 = min(0.55+(477N/mm2-fs)/(120×(0.9N/mm2+(m/d2))),2) = min (2.38, 2.00)
Modification factor; k1 =  2.00
Allowable span to depth ratio; = 6.56 × k1 = 13.12
Actual span to depth ratio; L / d = 1312.5/124 = 10.58
L/d ratio Okay
Check Cracking
Clear spacing of bars = 200 – 12 = 188 mm
3d = 3 × 124 = 372 mm
47000/fs = 47000/119.04 = 394 mm

Bar spacing Okay

Anchorage length
Ultimate anchorage bond stress, fbu = β√fcu = 0.5√20
fbu = β√fcu = 2.24 N/mm2
L = (0.95fy) × f/ (4 fbu)f = (0.95×460×12)/ (4× 2.24) = 585.26 mm
L = 0.58526 m
However, ISTRUCTE detailers’ manual recommends
L = (1.5 × span) + 0.1125 = (1.5 × 1.3125) + 0.1125
L = 2.08125 m
Also L = 0.3 × span preceding cantilever span
In this case we take 4.5 m
L = 0.3 × 4.5 = 1.35 m
Therefore we adopt L = 2.08125m
i.e. 2.1 m from the centerline of the support