For two span Beam
Using the three moment equation
MAL + 2MB(L+L) + MCL = (wL3/4) + (wL3/4)
Since MA = MB = 0
4MBL = wL3/2
MB = wL2/8 = 0.125wL2………………………………….......…..1
Reaction RAB
Note: S. S. R. means simple suport reaction
C. C. means continuity correction
S.S.R =wl/2
C. C. means continuity correction
S.S.R =wl/2
C.C = (|MA| - |MB|)/L = (-MB)/L = wl/8
Reaction RAB = ∑R = S.S.R + C.C.
= wL/2-wL/8 =3wL/8
RAB =3wL/8 = 0.375wL…………………………………2
Reaction RBA
S.S.R, = wL/2
C.C = (|MB|-|MA|)/L = (MB)/L
Reaction RAB = ∑R = S.S.R + C.C. = wL/2 + wL/8 = 5wL/8
C.C = (|MB|-|MA|)/L = (MB)/L
Reaction RAB = ∑R = S.S.R + C.C. = wL/2 + wL/8 = 5wL/8
RBA =5wL/8 = 0.625wL................................................................3
Due to symmetry, RAB =RCB = 3wL/8
RBA = RBC =5wL/8
Maximum Span Moment on Span A-B
Mx = RAB - wx2/2...........................................................................4
At maximum moment
dMx/dx = RAB - wx = 0
x = RAB/w = 3L/8 = 0.375L
Substituting for x = 3L/8 in equ (4)
Mmax = (3wL/8).(3L/8) - (w/2). (3L/8)2
= 9wL2/64( 1-1/2) = 9wL2/128
Mmax = 9wL2/128 = 0.0703wL2...................................................5
Alternatively,
Mx = RBA - wx2/2 - MB
At maximum moment
dMx/dx = RBA - wx = 0
x = RBA/w = 5L/8
Substituting for x = 5L/8 in equ (4)
Mmax = (5wL/8).(5L/8) - (w/2). (5L/8)2 -wL2/8
= 9wL2/128
Mmax = 9wL2/128 = 0.0703wL2.................................................6
For three span Beam
Using the three moment equation
SPANS A-C
MAL + 2MB(L+L) + MCL = wL3/4 + wL3/4
MA = 0
4MBL + MCL = wL3/2………………………………………………7
SPANS B-D
SPANS B-D
MBL + 2MC(L+L) + MDL = wL3/4 + wL3/4
MD = 0
MBL + 4MCL = wL3/2………………………………………………8
Equating 7 and 8
4MBL + MCL = MBL + 4MCL
Equating 7 and 8
4MBL + MCL = MBL + 4MCL
4MB + MC = MB + 4MC
3MB = 3MC
MB = MC
Substituting for MB = MC in equation 7
4MCL + MCL = wL3/2
4MCL + MCL = wL3/2
5MCL = wL3/2
MC = wL2/10 = 0.1wL2....……………………………………………9
Since MB = MC
Since MB = MC
MB = MC = wL2/10 = 0.1wL2
S.S.R = wL/2
C.C = (|MA|-|MB|)/L = (- MB)/L = wL/10
RAB = ∑R = S.S.R + C.C. = wL2/2-wL/10
RAB = ∑R = S.S.R + C.C. = wL2/2-wL/10
RAB = 4wL/10 = 0.4wL......................................................................10
Similarly
Similarly
RBA = wL/2 + wL/10 = 6wL/10
RBA = 6wL/10 = 0.6wL……………………………………………..11
S.S.R. = wL/2
C.C = (|MB|-|MC|)/L = 0
S.S.R. = wL/2
C.C = (|MB|-|MC|)/L = 0
RBC =RCB = wL/2 = 0.5wL.................................................................12
Maximum Span Moment on Span A-B
Mx = RAB - wx2/2...........................................................................13
At maximum moment
dMx/dx = RAB - wx = 0
x = RAB/w = 4L/10 = 0.4L
Substituting for x = 4L/10 in equ (13)
Mmax = (4wL/10).(4L/10) - (w/2). (4L/10)2
= 16wL2/100( 1-1/2) = 16wL2/200
Mmax = 16wL2/200 = 0.08wL2......................................................14
Maximum Span Moment on Span B-C
Mx = RBC - wx2/2 - |MB| ...............................................................15
At maximum moment
At maximum moment
dMx/dx = RBC - wx = 0
x = RBC/w = 5L/10
Substituting for x = 5L/10 in equ (15)
Mmax = (5wL/10).(5L/10) - (w/2). (5L/10)2 -wL2/10
= 25wL2/200 - wL2/10
Mmax = wL2/40 = 0.025wL2............................................................16