Thursday, 10 May 2012

Bending Moments and Shears: Equal Span Coefficients

For two span Beam
Using the three moment equation
MAL + 2MB(L+L) + MCL = (wL3/4) + (wL3/4)
Since MA = MB = 0
4MBL = wL3/2
MB = wL2/8 = 0.125wL2………………………………….......…..1
Reaction RAB
Note: S. S. R. means simple suport reaction
          C. C. means continuity correction

S.S.R =wl/2
C.C = (|MA| - |MB|)/L = (-MB)/L = wl/8                  
 Reaction RAB = ∑R = S.S.R + C.C.
                        = wL/2-wL/8 =3wL/8
            RAB =3wL/8 = 0.375wL…………………………………2

Reaction RBA
S.S.R, = wL/2

C.C = (|MB|-|MA|)/L = (MB)/L  

Reaction RAB = ∑R = S.S.R + C.C. = wL/2 + wL/8 = 5wL/8
RBA =5wL/8 = 0.625wL................................................................3
Due to symmetry, RAB =RCB = 3wL/8
RBA = RBC =5wL/8

Maximum Span Moment on Span A-B
Mx = RAB - wx2/2...........................................................................4
At maximum moment
dMx/dx = RAB - wx = 0
x = RAB/w = 3L/8 = 0.375L
Substituting for x = 3L/8 in equ (4)
Mmax = (3wL/8).(3L/8) - (w/2). (3L/8)2
              = 9wL2/64( 1-1/2) = 9wL2/128
 Mmax = 9wL2/128 = 0.0703wL2...................................................5
Alternatively,
Mx = RBA - wx2/2 - MB
At maximum moment
dMx/dx = RBA - wx = 0
x = RBA/w = 5L/8
Substituting for x = 5L/8 in equ (4)
Mmax = (5wL/8).(5L/8) - (w/2). (5L/8)2 -wL2/8
= 9wL2/128
Mmax = 9wL2/128 = 0.0703wL2.................................................6
For three span Beam
Using the three moment equation

SPANS A-C
MAL + 2MB(L+L) + MCL = wL3/4 + wL3/4
MA = 0
4MBL + MCL = wL3/2………………………………………………7

SPANS B-D
MBL + 2MC(L+L) + MDL = wL3/4 + wL3/4
MD = 0
MBL + 4MCL = wL3/2………………………………………………8
Equating 7 and 8

4MBL + MCL = MBL + 4MCL
4MB + MC  = MB + 4MC
3MB = 3MC
MB = MC
Substituting for MB = MC in equation 7
4MCL + MCL = wL3/2
5MCL = wL3/2
MC = wL2/10 = 0.1wL2....……………………………………………9

Since MB = MC
MB = MC = wL2/10 = 0.1wL2
S.S.R = wL/2
C.C = (|MA|-|MB|)/L = (- MB)/L = wL/10
RAB = ∑R = S.S.R + C.C.  = wL2/2-wL/10
RAB = 4wL/10 = 0.4wL......................................................................10
Similarly
RBA = wL/2 + wL/10 = 6wL/10
RBA = 6wL/10 = 0.6wL……………………………………………..11
S.S.R. = wL/2
C.C = (|MB|-|MC|)/L = 0
RBC =RCB = wL/2 = 0.5wL.................................................................12
Maximum Span Moment on Span A-B
Mx = RAB - wx2/2...........................................................................13
At maximum moment
dMx/dx = RAB - wx = 0
x = RAB/w = 4L/10 = 0.4L
Substituting for x = 4L/10 in equ (13)
Mmax = (4wL/10).(4L/10) - (w/2). (4L/10)2
              = 16wL2/100( 1-1/2) = 16wL2/200
 Mmax = 16wL2/200 = 0.08wL2......................................................14
Maximum Span Moment on Span B-C
Mx = RBC - wx2/2 - |MB| ...............................................................15

At maximum moment

dMx/dx = RBC - wx = 0
x = RBC/w = 5L/10
Substituting for x = 5L/10 in equ (15)
Mmax = (5wL/10).(5L/10) - (w/2). (5L/10)2 -wL2/10
= 25wL2/200 - wL2/10
Mmax = wL2/40 = 0.025wL2............................................................16

Wednesday, 4 April 2012

The Golden Spiral and The Fibonacci Numbers




The Golden Spiral Approximately derived from the Fibonacci Numbers :
12 + 12 + 22 + 32 + 52 + 82 +132 + F(n)2
Shells: Example of the Golden Spiral in Nature
Shells: Example of the Golden Spiral in Nature
The Cosmos: Example of the Golden Spiral in Nature

Monday, 2 April 2012

Optimum Positions for HB vehicle for Maximum Longitudinal Moments and Support Reactions on Short Span Bridge Decks


Plan of Bridge Deck
The HB vehicle is placed on the bridge deck as shown above
Where   L = span of bridge or beam
                X = varying distance of axle 1 from left support A
  P = wheel load for number of units of HB vehicle under consideration
Taking moment about A
RB.L = 4P (9.6 +x) + 4P(7.8 + x) + 4P(1.8 + x) + 4Px
RB.L = 4P(9.6 + 7.8 + 1.8 +x +x +x + x)
         = 4P(19.2 + 4x)
RB = 4P  x 4(4.8 + x)
         L
 
RB = 16P(4.8 + x)
         L
RB = 16P(4.8 + x)……………………………………………………………….(1)
         L
Corresponding relation at A
 RB =16P -  16P (4.8 + x)…………………………………………………………………………………..(2)
                   L
Maximum moment should exist under axle 2 at (x + 1.8)m distance from A
1-1(4.8 + 2x)  =  1.8
    L                      L       
L – (4.8 + 2x) =  1.8
L – 4.8-2x = 1.8
L-2x = 6.6
L – 6.6 = 2x
X =  L – 6.6  =  L – 3.3
           2           2

X =    L – 3.3…………………………………………………………………………………………………………………(3)
         2
This is the distance of axle  1 from A at maximum moment.

The distance of axle 2 from A is
X + 1.8   =  L   3.3 + 1.8  =     L – 1.5
                  2                            2
(x + 1.8)  =   L – 1.5…………………………………………………………………………………………………..(4)
                    2 
 
i.e. the vehicle is placed such that the centire line of the bridge is equidistant from the axle 
 2 and the centre line of the HB vehicle.
Mmax = RA(x + 1.8) – 4P X 1.8
          = (16P  16P(4.8 +x))(x + 1.8) – 4.8 X 1.8
                             L                          
= (16P  16P(4.8 +L – 3.3))(L -3.3 + 1.8) – 7.2P
                 L            2            2         

= (16P  16P(L + 1.5))(L -1.5) – 7.2P
                 L    2            2 
= [(16P  16P. L -16P . 3)( L – 1.5)] – 7.2P
                   L  . 2   L  .   2   2
= [(8P  – 8P . 3)   (L -1.5))]  – 7.2P
                   L        2

= 8P(1  3) .  (L -1.5)  – 7.2P
               L       2 

= 8P[( L – 3) .  (L -3)] -7.2P
             L           2 
Mmax = 8P( L – 3)2 – 7.2P ………………………………………………………………(5)
                 2L          
Calculation for Max RA
From eqn 1
              
RA = 16P -    16P(4.8 + x)
                      L
RA is a maximum when X=0
Therefore;
   RA = 16P (1 – 4.8)
                          L
RA = 16P (L – 4.8)………………………………………………..(6)
              L


              




                         

Thursday, 22 March 2012

Grillage Analysis:Wheel Load Transfer to Nearest Joints

Grillage Analysis
      Wheel Load Transfer to nearest joints.

First Step
Cutting section along e-f

Re x l1 = P x b
Re = P x b/l1

Similarly;      
Rf = P x a/l1

Second Step
Considering beam 1-4


R1 = Re x d/l2
Thus:
R1 = P x b x d/ (l1 x l2) = (b x d/l1 x l2) x P

Similarly:
R4 = Re x c/l2
R4 = P x b x c/ (l1 x l2) = (b x c/l1 x l2) x P
 

Considering beam 2-3




R2 = Rf x d / l2
R2 = P x a x d / (l1 x l2) = (a x d /l1 x l2) x P

Also:
R3 = Rf x c / l2
R3 = P x a x c / (l1 x l2) = (a x c / l1 x l2) x p




R x l1 x l2 = P x b x d
R1 = (b x d / l1 x l2) x P


                                       Similar argument can be applied to the other nodes.





Wednesday, 21 March 2012

Vortex Induced Vibration-Oil Platform Riser (English Units)


CROSS FLOW VORTEX INDUCED VIBRATION ANALYSIS 
Global Variables - Input 
Prepared by: Checked by:
Pipe Outside Diameter, Do =   18in
Pipe Wall Thickness,t =   0.562in
Concrete weight coating thickness, tc =  1.5in
Young Modulus -Steel, E =   2.90E+07psi
Sea current velocity for a 100 yr Return period storm, U = 3ft/s
Specified minimum yield strength of pipe, Sy =  52000psi
Strouhal number, St =    0.219 
Kinematic viscosity of sea water at 70oC, vk  0.0000113ft2/s
End fixity constant, C =(kπ)/2   2.55 
Added mass coefficient, Cm   1 
Concrete weight coating density, ρoc =  140lbs/ft3
Density of Steel, ρos =    490lbs/ft3
Density of Seawater, ρow =   64lbs/ft3
Logarithm Decrement, δ   0.05 
        
        
ψT =Normal Safety Class coefficient  2 
ψD =Period transformation Factor  1 
ψR =Natural frequency Reduction Factor 1 
ψU =Extreme Current Variability factor  1 
 
  
Pipe Inside Diameter, Di = Do - 2t   16.876in
Total pipe outside diameter with concrete coating, Dtot = Do+2tc21in
Moment of inertia of cross section, I  1171.637829in4
Damping ratio, ζ = δ2/(δ2+4π2)   0.007956464 
Weight of displaced water, ww =(π/4)*Dtot2ow 153.958lbs/ft
Weight of contents, wocn =(π/4)*Di2ocn  99.4266266lbs/ft
Dry weight of pipe with concrete coating, ws    
 =(π/4)*((Do2-Di2)*ρos +(Dtot2-Do2))*ρoc  194.1292651lbs/ft
Specific weight of pipe, (ρsw) = (ws/ww)   1.260923532 
Dynamic mass, wd =(ww + wocn + ws) / g   13.89794695slugs/ft
Stability Parameter, Ks =π2 ζ ((ρsw) -Cm)  0.020494895 
Free Span Reduced Velocity, VR,ONSET CROSS FLOW   
 =((π3)*((ρsw + Cm)/(1.5+St2+(ρs/ρw + Cm)-1.5Ks2)))^0.5     3.797567143 
Limiting criteria for the onset of Cross flow Vibration,   
fn ≥ (U/(VR,ONST*Dtot))*ΨTDRU  0.902833656Hz
Maximum Allowable Free Span length, L   ft
=(((C*((EI/M)^0.5)))/fn)^0.5)   107.8787189ft